Wednesday, August 21, 2019

Top Five Tips for Choosing a Flow Meter

flow technologyThe wide range of flow technology alternatives on hand can make it a confusing task to select the right flowmeter. A wide range of factors can influence the selection of flowmeter, of which only one is the cost. Including the fluid type, application environment, working parameters such as temperature, pressure and flow rate, flow meter technology, requirements for precision and repeatability, reliability, installation limitations, maintenance requirements, and instrument life cycle are many considerations to consider. Below are our top five criteria when selecting a flow meter.
  1. Regulations, compliance
    1. What local, state, regional or national regulations impact the measurement location?
    2. Are there additional recording, data logging or calibration verification requirements to comply with regulations?
    3. What agency approvals must the flow meter have?
  2. Fluid type at the measurement point
    1. Dry or wet gas conditions may affect sensors
    2. Corrosive components in oil may affect sensor material selections
    3. Flow back contains mixtures of oil, gas, solids, chemicals, and water that must be separated
  3. Fluid conditions
    1. Does the accuracy spec of the flow meter change based on the composition of the fluid type?
    2. Does the fluid composition change over time?
    3. What is the pressure and velocity in the pipe? Is it constant?
    4. Are there installation limitations (straight pipe runs, limited access to the pipe, tight spaces)?
  4. Additional equipment
    1. Does the flow meter require additional equipment or instrumentation to operate successfully at the point of measurement?
  5. Additional calculations
    1. Will you need to do additional calculations to determine an accurate flow rate? 
List is courtesy of Fox Thermal.

For more information about flow meter selection, contact:

Power Specialties, Inc.
9118 E. 72nd Terrace
Raytown, MO 64133
Toll Free: (800) 432-6550
Phone: (816) 353-6550
Fax: (816) 353-1740
www.powerspecialties.com

Thursday, July 25, 2019

Top 10 Reasons Why ProSafe-RS Safety Instrumented System (SIS) Is the Fastest Growing Safety Control System


Before ProSafe-RS, DCSs and SISs were typically supplied by different vendors and required extra engineering for the individual systems and interconnections. Furthermore, these systems were more difficult to master and operate as they had different interfaces. ProSafe-RS overcomes these hurdles through complete integration with Yokogawa’s CENTUM DCS – an industry first. The ProSafe-RS has been a global success since its debut in 2005, and is continually being improved.

ProSafe-RS has a unique and excellent dual architecture that is based on Yokogawa’s supremely reliable DCS technology. The SIS has a modular design, and dual architecture is implemented inside each module. And the modules themselves can be installed in a dual redundant configuration. This is controlled by the SIS and is fully transparent to the user. This approach maximizes both safety and availability, independently and simultaneously. This flexible system configuration makes it possible for the user to configure redundancy on a module by module basis, achieving the required availability in each system component.

For more information about Yokogawa's ProSafe-RS, contact Power Specialties, Inc. Call them at (816) 353-6550 or visit their web site at https://powerspecialties.com.

Wednesday, July 10, 2019

A Better Solution for Open Channel Flow Measurement

Open Channel Flow Measurement
Open channel flow instruments require accurate measurement of the surface level of a liquid. A flume, channel or structure which has a known characteristic flow per measured head, together with the measured liquid level, accurately define the flow rate through the system.

Hawk Level Sensor
Hawk transducer for water applications.
Traditional systems use a stilling well and pressure level measurement system to measure the liquid level in the structure. Sedimentation and buildup will over time cover the sensing part of a pressure measurement system, leading to inaccurate or completely failed measurement. Buildup can also block passages to a stilling well, making any level measurement inaccurate or false. Regular cleaning of measurement systems and stilling wells is required to ensure operation.

Open Channel Flow Measurement The level instrumentation control manufacturer Hawk Measurement uses a non-contact Acoustic Wave sensor, positioned directly over the channel or flow structure, or above the stilling well if required, to provide maintenance free, reliable measurement of the liquid level.

Open Channel Flow Measurement The Hawk Sultan Flow instrument calculates flow through a range of standard measurement structures, and can also be individually tailored to a non-standard flow characteristic. Measurements are temperature compensated, and sensors are available covering a broad range of water, waste-water, irrigation and environmental monitoring applications.

Open Channel Flow Measurement Powerful measurement pulses keep sensor facings clean from moisture and condensation, ensuring maximum performance in all conditions. Continuous and switched outputs are included, as well as local totalizing of flow, and the ability to provide pulsing outputs per flow volume to external counting devices.

For more information, contact Power Specialties, Inc. Call them at (816) 353-6550 of visit their site at https://powerspecialties.com.



  

Sunday, June 30, 2019

US Power Grids, Oil and Gas Industries, and Risk of Hacking


A report released in June, from the security firm Dragos, describes a worrisome development by a hacker group named, “Xenotime” and at least two dangerous oil and gas intrusions and ongoing reconnaissance on United States power grids.

Multiple ICS (Industrial Control Sectors) sectors now face the XENOTIME threat; this means individual verticals – such as oil and gas, manufacturing, or electric – cannot ignore threats to other ICS entities because they are not specifically targeted.

The Dragos researchers have termed this threat proliferation as the world’s most dangerous cyberthreat since an event in 2017 where Xenotime had caused a serious operational outage at a crucial site in the Middle East. 

The fact that concerns cybersecurity experts the most is that this hacking attack was a malware that chose to target the facility safety processes (SIS – safety instrumentation system).

For example, when temperatures in a reactor increase to an unsafe level, an SIS will automatically start a cooling process or immediately close a valve to prevent a safety accident. The SIS safety stems are both hardware and software that combine to protect facilities from life threatening accidents.

At this point, no one is sure who is behind Xenotime. Russia has been connected to one of the critical infrastructure attacks in the Ukraine.  That attack was viewed to be the first hacker related power grid outage.

This is a “Cause for Concern” post that was published by Dragos on June 14, 2019

“While none of the electric utility targeting events has resulted in a known, successful intrusion into victim organizations to date, the persistent attempts, and expansion in scope is cause for definite concern. XENOTIME has successfully compromised several oil and gas environments which demonstrates its ability to do so in other verticals. Specifically, XENOTIME remains one of only four threats (along with ELECTRUM, Sandworm, and the entities responsible for Stuxnet) to execute a deliberate disruptive or destructive attack.

XENOTIME is the only known entity to specifically target safety instrumented systems (SIS) for disruptive or destructive purposes. Electric utility environments are significantly different from oil and gas operations in several aspects, but electric operations still have safety and protection equipment that could be targeted with similar tradecraft. XENOTIME expressing consistent, direct interest in electric utility operations is a cause for deep concern given this adversary’s willingness to compromise process safety – and thus integrity – to fulfill its mission.

XENOTIME’s expansion to another industry vertical is emblematic of an increasingly hostile industrial threat landscape. Most observed XENOTIME activity focuses on initial information gathering and access operations necessary for follow-on ICS intrusion operations. As seen in long-running state-sponsored intrusions into US, UK, and other electric infrastructure, entities are increasingly interested in the fundamentals of ICS operations and displaying all the hallmarks associated with information and access acquisition necessary to conduct future attacks. While Dragos sees no evidence at this time indicating that XENOTIME (or any other activity group, such as ELECTRUM or ALLANITE) is capable of executing a prolonged disruptive or destructive event on electric utility operations, observed activity strongly signals adversary interest in meeting the prerequisites for doing so.”

Wednesday, June 19, 2019

Creating a Calibration Curve with the CHINO IMRA Infrared Multi Analyzer


The CHINO IMRA on-line multi IR wavelength analyzer utilizes infrared absorption technology to measure moisture, film-thickness, organic properties, and coating-thickness in real time. Signal processing capabilities are built into the compact, stand-alone detector unit for easy installation and operation. A maximum of 99 calibration curves can be stored into the detector memory for numerous measurement applications. This video demonstrates how to create a calibration curve. In this demonstration, moisture content is measured in sand. 

For more information about CHINO moisture, film-thickness, organic properties, and coating-thickness analyzers, contact Power Specialties, Inc. by calling (816) 353-6550 of visit their website at https://powerspecialties.com.

Friday, May 31, 2019

Rotameters a.k.a Variable Area Flow Meters

Rotameter
Rotameter
(Yokogawa)
Rotameters have diverse industrial processing applications that range from simple to sophisticated. The devices are easy to install, require no electrical connection, and provide direct flow rate reading. They provide fail-safe flow rate in different situations. 

The post will highlight the workings of rotameters, also known as a variable area flow meter.

Rotameters: An Overview 

Invented by German inventor Karl Kueppers in 1908, rotameters measure the volumetric flow rate of liquids and gases. The device was so named because it functions by rotating in a tube. 

Important elements of a rotameter include the tube and the float. 

The tube is fixed vertically and liquid is fed from the bottom. The fluid is fed from the bottom that travels upward and exits from the top. The float remains at the bottom when no liquid is present and rises upward when fluid enters the tube. 

The float inside the tube moves in proportion to the rate of fluid flow and the area between the tube wall and the float. When the float moves upward, the area increases while the differential pressure decreases. A stable position is reached when the upward force exerted by the fluid is equal to the weight of the float. A scale mounted on the tube records the flow rate of the liquid. 

Every float position shows a specific flow rate for the viscosity and density of a liquid. The device helps in determining the flow rate by matching the position of the float to a scale on the rotameter. The flow can be adjusted manually using a built-in valve. 

Types of Rotameters 

Rotameters can be categorized by the type of tube. A sharp metering edge is located on the float from where the reading is observed by a scale on the tube. The connections and end fittings of the various types of rotameters are different. 

Glass Rotameter
Rotameter
Glass rotameters
(Yokogawa)

The basic glass rotameters consist of borosilicate glass tube while the float is made of either glass, plastic, or stainless steel. The most common combination is a glass tube and metal float. This is suitable for a measure the flow rate of liquid of low to medium temperature and pressure. 

Flow rate is determined by the spring and piston combination of the rotameter. The materials and fittings should be chosen as per the temperature and pressure of the liquid. 

Metal Rotameter

Metal tube rotameters are another type that is suitable for temperatures and pressures beyond the glass tubes. They are generally manufactured of stainless steel, aluminum, and brass. The piston position is determined by the mechanical and magnetic followers that can be read from the outside of
the tube. 

Rotameter
Metal rotameter
(Yokogawa)
The meters are generally used for steam applications where glass tube rotameters are not suitable. They are also suitable in situations where other forces would damage the glass metering tubes. 

Industrial Applications of Rotameters

The use of rotameter extends across different industries. The device is extensively used in industries since its an economical way to measure a range of flow rates in almost any conditions. 

Sample Process Analysis 

Rotameters are widely used in sample process analysis. A device with 4 to 20 mA output is used to measure the flow of a sample system. Monitoring the flow rate ensures that the system does not become plugged that could result in big problems. The device can indicate when the flow starts to drop so that the maintenance crew can address the problem before it results in major damage. 

Transport of Liquid Natural Gas 

LNG must be re-gasified during transport to prevent system overpressure that could cause major damage to the storage system. Rotameter can measure the flow rate of vented vapor even at very low temperature. They are ideal for determining the LNG flow rate during transport due to being low cost and providing an accurate reading. 

Rotating Equipment 

Rotameters are also used in measuring the flow of liquid in large rotating equipment. They are used to measure the flow rate of dry gas, coolants, lubricant fluids to ensure safe operations. The device helps in monitoring of coolant flows a lube oil. The flow can be measured continuously due to the use of 4— 20 mA transmitting rotameters.  

Benefits of Rotameters

Rotameters, or variable area flow meters are cost-effective for use in different industrial applications. The price and low maintenance of the device contribute to significant savings for industrial concerns. 

Another advantage of rotameters is that no external power is required. They are mechanical device and no external power source is required to measure the flow rate. This makes it possible for the device to be used in remote and hazardous areas where installing an external power supply can be costly. 

The design of the rotameter allows not the only the measurement of fluid flow but also determine the quality of the liquid. The crew members can see whether the fluid is dirty thereby requiring a change of filter. They can also know whether bubbles are present in the liquid and also whether the liquid is of the correct color. 

Rotameters can be installed along with other flow measuring devices to ensure accurate readings. The device can continuously determine an accurate flow rate. They are simple to install and easy to maintain. Just connect the process line to rotameter’s inlet and outlet pipe. That’s why they are commonly used in many industries where it’s critical to accurately measure the flow rate of the liquid. 

Contact Power Specialties, Inc. with any questions regarding the use of rotameters. Call them them at (816) 353-6550 or visit https://powerspecialties.com.